
1 23

Software & Systems Modeling

ISSN 1619-1366

Softw Syst Model
DOI 10.1007/s10270-013-0363-3

Constraint-driven modeling through
transformation

Andreas Demuth, Roberto Erick Lopez-
Herrejon & Alexander Egyed

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Softw Syst Model
DOI 10.1007/s10270-013-0363-3

SPECIAL SECTION PAPER

Constraint-driven modeling through transformation

Andreas Demuth · Roberto Erick Lopez-Herrejon ·
Alexander Egyed

Received: 15 October 2012 / Revised: 5 June 2013 / Accepted: 16 June 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract In model-driven software engineering, model
transformation plays a key role for automatically generat-
ing and updating models. Transformation rules define how
source model elements are to be transformed into target
model elements. However, defining transformation rules is
a complex task, especially in situations where semantic dif-
ferences or incompleteness allow for alternative interpre-
tations or where models change continuously before and
after transformation. This paper proposes constraint-driven
modeling where transformation is used to generate con-
straints on the target model rather than the target model
itself. We evaluated the approach on three case studies
that address the above difficulties and other common trans-
formation issues. We also developed a proof-of-concept
implementation that demonstrates its feasibility. The imple-
mentation suggests that constraint-driven transformation is
an efficient and scalable alternative and/or complement to
traditional transformation.

Keywords Model-driven engineering (MDE) · Model
transformation · Ambiguity · Consistency checking ·
Incremental constraint management

1 Introduction

With the broadening use of Model-Driven Engineering
(MDE) [1] for complex software systems, the generation of
models from existing artifacts through model transformation
[2] is a vital necessity. Various classifications and taxonomies

Communicated by Prof. Juan de Lara and Prof. Zhenjiang Hu.

A. Demuth (B) · R. E. Lopez-Herrejon · A. Egyed
Institute for Systems Engineering and Automation,
Johannes Kepler University (JKU), Linz, Austria
e-mail: andreas.demuth@jku.at

have been published to compare the state of the art (e.g.,
[3,4]). Rich transformation languages are available, such as
ATL [5] or QVT [6], which define transformation rules that
are executed by a transformation engine. The transformation
engine generates a target model from a source model, typi-
cally through a series of transformation rules. To date, various
sophisticated transformation techniques exist that produce
excellent results as long as the generated models are static
and there are no uncertainties [7,8]. However, model transfor-
mation has yet to overcome several key challenges [4,9,10]:

– How to allow transformation without overwriting
changes made by the designer?

– How to transform in the face of uncertainty where mul-
tiple target models satisfy a given source model?

– How to support bi-directional consistency where the
direction of transformation is irrelevant?

Model transformation either generates a target model out of
a source model if none existed or it overwrites the exist-
ing target model. The latter is only desired if overwriting
the target model does not lead to information loss—a prob-
lem when the designer edited the target model prior to trans-
formation. In an idealized model transformation scenario,
the target model is generated but never modified after trans-
formation (later re-transformation does not lead to loss), or
the source model will not be modified after transformation
(avoiding later re-transformation). There are some situations
where models are stable enough for this idealized scenario
to apply, but in context of iterative/incremental development,
designers tend to change models continuously [7]. In such
cases, re-transformation may seriously affect the designer’s
normal workflow [11,12] if they do overwrite changes made
manually beforehand. Hence, incrementality is required to

123

Author's personal copy

A. Demuth et al.

allow partial model transformation in order to limit such con-
flicts [12].

The problem of re-transformation is also related to another
problem: that of uncertainty. Manual changes to a target
model are necessary if the information present in the source
model is insufficient to generate the target model. There are
two possible reasons for this: (1) the source model is incom-
plete, and/or (2) the semantic differences between the source
and target models make it impossible to generate the target
model in its entirety. Either reason implies uncertainty and
current state of the art is either not used in these cases or
the transformation implements a heuristic that automatically
decides. This severely reduces the usefulness of transforma-
tion: either because model transformation is not applicable
(leading to less automation) or because transformation gen-
erates a potentially incorrect target model (requiring manual
addition and changes to the target model after transforma-
tion). The issue is similar with bidirectional transformations
[10,13], which are often used to synchronize models or to
keep them consistent, when both involved models are edited
concurrently. Overall, these issues limit the usefulness of
transformation.

This paper proposes Constraint-driven Modeling (CDM),
a generic approach that guides the construction of new mod-
els while conserving consistency with the related models and
eliminates issues arising from re-transformation, uncertain-
ties, and bidirectionality. CDM does not generate a target
model out of a source model rather CDM generates con-
straints from the source model that represent the invari-
ants that the target models must satisfy. CDM thus does
not overwrite the target model (avoiding information loss)
and, as will be shown, constraints are an ideal vehicle to
express uncertainty and incompleteness correctly. The gen-
erated constraints, written in a constraint language (e.g., the
Object Constraint Language (OCL) [14]), are then continu-
ously validated by a constraint checker on the target model.
The constraint checker then provides the designer with feed-
back on constraint violations for guidance. Constraint viola-
tions in turn help the designer to stepwise transform the exist-
ing target model to a target model that satisfies all constraints.
Indeed, CDM may also be chained with existing state-of-
the-art technologies for repairing constraint violations—with
or without designer interaction. These existing technologies
provide guidance on what to repair and, at times, even how to
repair in order to achieve a correct target model. Indeed, if the
constraints are only satisfiable in a single target model, then
these repairs should be able to compute this model. Here, the
big advantage over traditional transformation is that these
repair mechanisms do consider the state of the target model
as part of the repair—including any manual changes made
before or after the transformation.

Thus, CDM can be seen as a complement to traditional
model transformation and model generation approaches; it

could also be seen as an alternative in concert with repair
technologies. Do note that CDM was first introduced in a
conference paper [15], and this paper explains CDM in more
detail and adds three case studies illustrating correctness,
usefulness, and scalability.

We evaluated our approach and showed its feasibility
by implementing a prototype that generates constraints,
enforces them incrementally, and informs the designer about
existing constraint violations (i.e., inconsistencies). It should
be noted that CDM does not prescribe a particular constraint
checking or repair mechanism. As a proof of concept, we
incorporated one such mechanism, called the Model/Ana-
lyzer [16]. The Model/Analyzer is a scalable, incremental
constraint checking mechanism, which has been validated on
numerous large industrial models [17]. However, any other
technology for constraint checking and repairing may be used
instead. The use of the Model/Analyzer is merely to demon-
strate that there is at least one such technology available
already. Since the Model/Analyzer has a proven scalabil-
ity record [17], the evaluation will focus on the correctness
and scalability of the generation of target model constraints
from a source model. We will show in a case study that the
median times for incremental transformation are close to 1 ms
for typical UML design models, and we will demonstrate
that the subsequent constraint validation times are similar to
those observed in [17]. In two additional case studies, we
also demonstrated the applicability and efficiency of CDM
in the domains of metamodeling and software product lines.
Our findings show that regardless of the applied domain,
the approach scales and also provides instant feedback when
involved models are edited.

2 Running example

To illustrate our work, we first present a scenario that is chal-
lenging for common model transformation approaches. Let
us consider the sequence and class diagrams shown in Fig. 1a,
b, respectively. In Fig. 1a, the unnamed instance of class
LightSwitch receives a message named activate.
According to the semantics of UML sequence diagrams,
this message requires that the instance of Light Switch

(a) (b)

Fig. 1 Two UML models (a) and (b)

123

Author's personal copy

Constraint-driven modeling

from
s : SequenceDiagram!Message

to
t : ClassDiagram!Method (

name <− s.name ,
owner <− getClass(s.receiver.className)

)

Listing 1 Sample transformation to generate methods in class diagrams

provides a method named activate also [18,19]. At first
glance, a simple transformation appears to solve the prob-
lem by automatically adding the method activate to class
LightSwitch in Fig. 1b whenever a message is added to a
sequence diagram whose name does not match any method in
the class. An example for such a transformation rule written
in ATL is shown in Listing 1. The rule is executed for every
Message instance (defined in the from-block) for which
it generates a Method instance (defined in the to-block).
It assigns a name and an owner derived from the Message
object for which it is executed to the attributes name and
owner of the generated Method.

However, there is an issue with this approach: Should the
method activate be added to LightSwitch or would
it make more sense for the system to add it to the super-
class Switch? Obviously, this question is hard to answer
automatically. One possibility would be to make an assump-
tion. For instance, always add the method to the target class,
LightSwitch in our example. This option can lead to the
generation of potentially unintended models where methods
are not declared in the desired place or where methods are
unnecessarily overridden. Another option is the use of heuris-
tics to find the most suitable solution for the problem. How-
ever, heuristics typically employ metrics to evaluate possible
solutions. Thus, heuristics may chose solutions that are opti-
mal with respect to defined criteria but that may not be seen
as optimal by designers.

3 Constraint-driven modeling

Common transformation languages usually describe the steps
that have to be performed to generate new models from exist-
ing ones. However, the previous section illustrated that it can
be difficult or even impossible to write transformation rules
that automate complex decisions.

In contrast to standard model transformations, we propose
to generate constraints on a model (to guide designers
or enable automatic approaches that establish consistency)
rather than generating the model itself whenever precise
transformation results cannot be derived. For example, the
added message activate on the source model should
impose a constraint that a same named method should be
available to classLightSwitch rather than saying it should
be owned by it. If the method is already there, then the con-

straint is instantly satisfied. If the method does not exist,
then the constraint’s violation will identify this lack and
further actions are required to deal with this problem—
actions that must either come from a human or be derivable
from the constraint violation (inconsistency) through reason-
ing (e.g., [20,21]).

When traditional model transformation approaches are
used, the transformation process can be regarded as:

A
Tm−→ Bg (1)

where A is called the source model, consisting of an arbitrary
number of model elements. Tm is a set of transformation rules
(called the transformation model), which is used to transform
A to the generated (denoted by the subscript g) model Bg .

We expanded this notation and define our approach as:

A
Tc−→ C � Br (2)

where the variable A denotes the source model and Tc is
a set of model transformation rules. However, as the solid
arrow from A to C and the changed subscript c of T indicate,
the transformation model no longer generates a model (i.e.,
Bg), but instead it contains different transformation rules that
are applied to A in order to generate a set of constraints, the
constraint model C .1 This constraint model consists of a set of
constraints that are enforced by an incremental consistency
checker on the model Br , as indicated by the curvy arrow
from C to Br . The model Br is no longer the generated model
but is now called the restricted model, as indicated by the
subscript r , which is either consistent or inconsistent with the
constraint model C , and therefore a valid or invalid solution
of the modeling problem.

Note that an initial version of Br may be generated through
a traditional transformation (analogous to Bg), through auto-
matic metamodel instantiation that is guided by the generated
constraints, or even built manually by a designer. However,
once generated, this proposed approach can detect inconsis-
tencies if both A and Br are evolved concurrently. Thus, our
approach should not be seen as replacing traditional trans-
formation approaches, but instead complementing them in
case of co-evolution, uncertainties, complex rule-scheduling
issues, or even model merging as will be demonstrated below.
Next, we present how it is applied.

3.1 Application: uncertainties

Let us come back to our running example from Sect. 2
where we illustrated that choosing the right class for a

1 This is different from existing approaches (e.g., [22,23]) that derive
constraints through interpretation or translation of transformation rules,
which generate the target model. In CDM, transformation rules are
executed by standard transformation engines to generate constraints—
there is no interpretation or translation of rules involved.

123

Author's personal copy

A. Demuth et al.

(a) (b)

Fig. 2 From ambiguous model transformation (a) to constraint
transformation (b)

rule t1
from

s : SequenceDiagram!Instance
to

t : ConstraintModel!Constraint (
context <− "Package" ,
inv <− "self . classes−>exists (c | c .name=’" + s.className

+ " ’)"
)

rule t2
from

s : SequenceDiagram!Message
to

t : ConstraintModel!Constraint (
context <− "Class" ,
inv <− "self .name=’" + s.receiver.className + "’ implies

self .providedMethods−>exists (m|m.name=’" +
s.name + " ’)"

)

Listing 2 Transformation rules to generate class (t1) and method (t2)
constraints

required method cannot be fully automated. The tradi-
tional approach shown in Fig. 2a automatically generates
one of several possible models, and we could at most
use heuristics for deciding on which transformation to use
(which never guarantees intended results). However, while
the knowledge contained in Fig. 1a is insufficient to gen-
erate a correct update to the class diagram, it is sufficient
to generate a correct constraint on that diagram. Such con-
straints can be generated incrementally by transformation
rules whose execution is triggered by the addition/removal
of class instances or messages in sequence diagrams that
can be efficiently validated by state-of-the-art consistency
checkers.

To automate constraint generation in our example, we
define two transformation rules that are triggered by class
instances or messages in sequence diagrams and that use
information from the sequence diagram to generate very
specific and expressive constraints. These rules are shown
in Listing 2. The rule t1 takes an instance specification
(e.g., a lifeline) and generates a constraints that requires
the model’s base package to provide a class with a match-
ing name. Rule t2 is triggered by a message and gener-
ates a constraint that requires the message’s receiver class
to provide a method with a name equal to the message
name. Note that, even though we use ATL-like syntax for
this example, our approach can be used with any transfor-
mation language. After applying these rules to the moti-
vating example from Sect. 2 as illustrated in Fig. 3 and

according to Eq. (2), C consists of the following OCL
constraints:

c1 context Package inv:
self.classes->exists(c|c.name=’LightSwitch’)

c2 context Class inv:
self.name=’LightSwitch’ implies
self.providedMethods->exists(m|m.name=
’activate’)

c3 context Class inv:
self.name=’LightSwitch’implies
self.providedMethods->exists(m|m.name=
’turnOff’)

In Fig. 3, we can see that the method required by the constraint
c2 is not present in Br , as indicated by the empty, dashed
rectangle in the LightSwitch class, meaning that this
particular model will be marked inconsistent. Note that, we
use OCL as the constraint language in our example because
it is a well-known and accepted language for writing con-
straints for design models and we have existing tool support
for incrementally validating OCL constraints and repairing
them. Nonetheless, in principle, any constraint language and
consistency checker may be used (e.g., [24]).

Figure 2b illustrates the basic concept of the constraint-
driven modeling approach. It is noteworthy that the approach
does not modify the restricted model. It simply defines con-
straints that restrict it. The generated restriction—depicted
as partial frame with rounded corners around the restricted
model Br —may be light in that there may be various
options on how to change the restricted model to satisfy the
constraints—hence supporting uncertainty. In such as case,
the designer—or also a fully automated approach that uses
heuristics—has the freedom to decide which of the options to
select (e.g., addactivate toLightSwitch orSwitch)
with the knowledge that the approach prevents options that
are invalid. In the most extreme case, the restrictions may
be severe enough to allow for one option only. In this case,
the only remaining option could be chosen automatically,
like in traditional transformation, to modify the target model
Br .

Figure 4 shows the visual notations we use throughout the
paper to illustrate the differences between common model
transformation and our approach. Figure 4a is equivalent
to Eq. (1). Figure 4b shows the notations for our approach.
Note that the constraint model C and the curved arrow to the
restricted model in Eq. (2) are replaced by a partial, restrict-
ing frame around B; Tc is not depicted.

3.2 Incremental constraint model management

Let us take a closer look at the transformation that generates
the constraint model C . As shown in Eq. (2) and Fig. 3, apply-
ing the transformation rules of the transformation model to
the source model generates the constraint model.

123

Author's personal copy

Constraint-driven modeling

Fig. 3 Application of CDM to
models from Fig. 1a, b

(a) (b)

Fig. 4 Traditional (a) and constraining (b) approach

The transformation approach we use supports incre-
mentality to allow updates of both the source model and
the transformation model without performing a complete
re-transformation.

3.2.1 Source model update

When the source model A is updated to A′, we can write this
as

A
ΔA−−→ A′ (3)

where ΔA is a sequence of modifications (i.e., 〈model
element, action ∈ {add, remove, update}〉) done to A (e.g.,
add a new model element or update an existing element).
Based on ΔA and the transformation model Tc, the set ΔC
can be generated, as shown in Eq. (4).

ΔA
Tc−→ ΔC (4)

ΔC includes pairs of constraints and actions (i.e., 〈constraint,
action ∈ {add, remove}〉) that define whether the constraint
should be added or removed from the existing constraint
model C . By applying ΔC on C , the updated constraint
model C ′ is generated:

C
ΔC−−→ C ′ (5)

(a) (b)

Fig. 5 Evolved versions of Fig. 1a, b

Let us consider the evolution of the models shown in
Fig. 1a, b to the versions shown in Fig. 5a, b where the
name of the message #2 was updated to deactivate,
the message #3 was introduced, and the name of the
method turnOff was changed to switchOff. For the
changes in the source model, the corresponding ΔA is
〈〈Message2, update〉, 〈Message3, add〉〉.

To build ΔC , the transformation engine executes those
transformation rules that use elements in ΔA (i.e., mes-
sage #2 and message #3) to generate the corresponding con-
straints, as defined in Eq. (4) and shown in Fig. 6.

For 〈Message2, update〉, the constraint c3′ is generated
and the information 〈c3′, add〉 is added to ΔC .

c3’ context Class inv:
self.name=’LightSwitch’implies
self.providedMethods->exists(m|m.name=’
deactivate’)

Since the constraint c3 was already generated from the same
element as c3′, message #2, 〈c3, remove〉 is also added to
ΔC in order to remove the now outdated constraint c3. For
〈Message3, add〉, the transformation rule t2 is executed to
generate a new constraint c4 and 〈c4, add〉 is added to ΔC .

c4 context Class inv:
self.name=’LightSwitch’implies
self.providedMethods->exists(m:Method|m.name
=’dim’)

Note that in this example, both elements in ΔA are used as
context of a transformation. However, if an element in ΔA
was accessed in any way during the execution of a transfor-
mation rule, the transformation also has to be re-executed
(e.g., c3 would have been updated to c3′ also if not the
message name, but the receiver’s name would had changed).
At this point, ΔC is {〈c3, remove〉, 〈c3′, add〉, 〈c4, add〉}.2

2 If the re-execution of a transformation rule updates an existing con-
straint (cx) rather than re-generating it, then both the outdated version
(i.e., cx) and the updated version (i.e., c

′
x) identify different version of the

same object (i.e., the version cx is lost as a consequence of the update).
In this case, the constraint is removed and added back to the constraint
model, causing the validation of the constraint with the updated infor-
mation (i.e., the necessary re-validation). Such updates may also be
handled automatically by some consistency checkers.

123

Author's personal copy

A. Demuth et al.

Fig. 6 Constraint model
updates after source model
changes

When these changes are applied to C = {c1, c2, c3} as
defined in Eq. (5) and shown in Fig. 6, the resulting updated
constraint model is C ′ = {c1, c2, c3′, c4}. We used dotted
lines for removed elements that is c3 and the corresponding
inconsistency in LightSwitch. As Fig. 6 indicates, the
constraints c3′ and c4 are violated by the restricted model
since the classLightSwitch does not provide the required
methods deactivate and dim.

3.2.2 Transformation model update.

If the transformation model Tc is updated to T
′
c , the changes

ΔTc, which have the form 〈transformation rule, action ∈
{add, remove}〉, are derived and used to generate ΔC from
A, as shown in Eq. (6).

A
ΔTc−−→ ΔC (6)

ΔC can then be used as shown in Eq. (5) to update the
constraint model to C ′.

Based on the model versions after the discussed source
model update, let us consider further changes—this time
to the transformation model—as depicted in Fig. 7: the
removal of the transformation rule t1 and the addition of
the new transformation rule t3, which is triggered by ele-
ments of the UML type Instance. ΔT in this case is
〈〈t1, remove〉, 〈t3, add〉〉. For the removal of t1, the con-
straints that have been generated for this rule are removed
from the constraint model and no transformation rules are
executed. Since c1 is the only constraint generated by t1,
〈c1, remove〉 is added to ΔC . For the addition of t3, the
transformation executes just this transformation rule and pro-

duces the new constraint c5 and adds 〈c5, add〉 to ΔC , which
finally is {〈c1, remove〉, 〈c5, add〉}.

c5 context Package inv:
self.ownedElements->exists(c:Class|
c.name=’LightSwitch’)

By executing ΔC , the existing constraint model C =
{c1, c2, c3′, c4} becomes C ′ = {c2, c3′, c4, c5}.

Ultimately, changes of the source model A affect the con-
straints that are enforced by the consistency checker:

C ′ � Br (7)

Next, we describe how such constraint model changes can
affect the consistency status of the restricted model Br .

3.3 Constraint validation and solution space

We define the solution domain of a modeling problem to
include all possible instances of a metamodel (there are likely
infinite). The solution space includes all valid models of the
solution domain. Constraints define certain criteria that valid
models must meet. Validating a constraint on a specific model
determines whether the model meets those criteria—if it does
not, it is not part of the solution space. Therefore, apply-
ing a constraint decreases the size of the solution space. For
example, Fig. 8a shows that the solution space in our run-
ning example is reduced to the specific models B1, B2, B3,
and B5 (drawn as black filled circles) when the constraints
c1–c4 are applied after the source model changes performed
in Sect. 3.2.1. In our illustrations, we show the remaining
solution space toward the center of the circle, and models
outside the solution space are drawn as an unfilled circle.

Fig. 7 Constraint model
updates after transformation
model changes

123

Author's personal copy

Constraint-driven modeling

Fig. 8 Effects of constraint
changes on solution space.
a Before, b changes, c after

(a) (b)

(c)

Note that this simplified view is only used to make the illus-
trations readable. Moreover, we assume that there is only a
limited number of possible models for the illustration—in
practice, the number of valid models may remain infinite.

We define the validation of a constraint c for a specific
model m as val : (m, c) → { f alse, true} where f alse
is returned if m violates c, true otherwise. For a restricted
model Br and a constraint model C , the result of a total val-
idation (i.e., a validation of all available constraints, written
as valT) would then be equal to:

valT (Br , C)=
∧

1≤i≤|C|
val(Br , ci) (8)

If at least one constraint validation val(Br , ci) returns f alse,
the overall status of Br is also f alse, and therefore, the model
is outside the solution space. It is easy to see that the order
of constraint validation does not affect the final result.
However, the execution order determines when the overall
inconsistency of a model Br is discovered during the valida-
tion and the order in which inconsistencies are corrected can
of course be important when deriving stepwise adaptations.

Constraints are composed of expressions that belong to
exactly one constraint (i.e., information is not shared between
constraints) and that are evaluated on the restricted model
only. Therefore, structural dependencies between constraints
do not exist and are not considered here. The addition of a new

constraint thus does not affect the validity of existing con-
straints as they are not connected structurally. This leads us
to the conclusion that constraints are structurally indepen-
dent of each other.3 Furthermore, the used transformation
rules do only access the source model to construct constraints
and add the constraint to the constraint model without access-
ing other constraint model elements, thus the transforma-
tion rules for generating constraints are independent and
dependencies between them that require a certain order of
execution cannot occur. These observations have interesting
benefits to model transformation discussed next.

When the constraint model is changed, so need to be the
restrictions imposed by it. There are three possible constraint
model changes, which we will show next: (i) addition, (ii)
removal, and (iii) update of constraints.4

3.3.1 Constraint addition

When new constraints are added to the consistency checker,
the solution space either stays unmodified or is narrowed,

3 Note that structural independence is a general property of constraints
and is not limited to specific constraint languages—in contrast to, for
example, OCL’s property of being side-effect-free.
4 In practice, a constraint update may be done by a consecutive removal
and addition of constraints.

123

Author's personal copy

A. Demuth et al.

as illustrated in Fig. 8. The addition of c5 in Sect. 3.2.2,
which requires an element of type Class and with the name
LightSwitchmust be owned by aPackage, does reduce
the remaining solution space (indicated by the thinly shaded
area around B3 in Fig. 8b) so that the previously valid model
B3 is removed from the solution space because the class
LightSwitch did not provide such a method, as shown in
Fig. 8c. The manual addition of a new constraint c6, which
requires a UML Package to own at least one element, does
not change the remaining solution space because there are
other constraints (e.g., c5) that impose stronger restrictions
than c6.

c6 context Package inv: self.ownedElements
->size()>0

As Eq. (9) shows, we can easily split the complete evalua-
tion of the new constraint model C ′ into the validation of the
old constraint model C and only those parts of C ′ that were
actually added (i.e., C ′\C).

|C ′|∧

h=1

val(Bx , c′
h)=

|C|∧

i=1

val(Bx , ci) ∧

|C ′\C|∧

j=1

val(Bx , (C
′\C) j) (9)

Assuming that the validation result for C is still available, we
can see that only the last part of Eq. (9) has to be evaluated to
determine whether a specific model Bx is part of the updated
solution space (i.e., a valid model). Obviously, this validation
is not even relevant if the old validation result was already
true.

As we have already discussed, the order of constraints
is not relevant for the final result of the consistency checker.
Therefore, the order in which constraints are added to the con-
straint model is not relevant for the final consistency status
of a model either.

3.3.2 Constraint removal

The removal of constraints can increase the size of the solu-
tion space. Figure 8 shows the removal of constraint c1, as
discussed in Sect. 3.2.2. This change means that the model
B4 becomes part of the solution space (as shown in Fig. 8c),
which was increased by the densely shaded area around B4
in Fig. 8b. Intuitively, it is not possible that the removal of a
constraint narrows the solution space. After constraints are
removed, the restricted model is validated with the remaining
constraints. As we have seen, the order of the constraints has
no effect on the final validation result.

In contrast to the addition of constraints, the basic con-
sistency checking mechanism we used in Eq. (8) cannot be

split into parts to reduce calculation effort since we do not
know the result of the remaining constraints. However, if we
capture the constraints that were inconsistent during the val-
idation of C , we can define a function ic(Bx , C) = {c|c ∈
C ∧ val(Bx , c) = f alse} that returns exactly those con-
straints. After removing constraints from C to generate C ′,
C\C ′ is the set of constraints that are removed from the con-
straint model. If ic(Bx , C) ⊆ C\C ′ holds, the model Bx is
a valid solution after the constraint model updates since all
constraints that previously caused an inconsistency are no
longer part of the constraint model. Whether the function
valT or the set comparison is used to determine the new con-
sistency status of a model, either way the order of removal
does not affect the final result.

3.3.3 Constraint update

We have defined that a constraint update consists of the
removal of old and the addition of new constraints. Therefore,
such an update can either increase or decrease the size of the
solution space, depending on the specific update. The con-
straint c4 is based on a message in a sequence diagram, and
it requires the LightSwitch class to provide a Method
with the name dim. If the constraint is updated so that it
requires an instance of a more specific class, for example
an instance of AsyncMethod instead of Method, c4 is
updated to c4′, the solution space size is decreased (indi-
cated by the thinly shaded area around B5 in Fig. 8b), and
B5 becomes inconsistent because the class only provides
a Method object. However, Fig. 8b also illustrates a pos-
sible update to c4′′ (indicated by the dotted line) where the
required object is allowed to be an instance of a more general
class (e.g., NamedElement). This update would increase
the solution space by the densely shaded area and make B6
consistent.

After performing the addition of c5 and c6, the removal
of c1, and the update of c4 to c4′, the updated solution space
consists of B1, B2, and B4 as shown in Fig. 8c.

4 Providing guidance and executing fixes automatically

When an inconsistency is detected, the minimum amount of
guidance provided to the designer is a notification about the
inconsistency’s occurrence and its location (i.e., which model
element violates which constraint). Based on data captured
during constraint validation, consistency checkers can deter-
mine which model elements are actually causing the incon-
sistency [21]. Hence, the designer can be informed about the
locations of error-causing elements.

Constraint-driven modeling may appear inferior to tradi-
tional transformation in that it does not generate or update
model elements in the restricted model. However, there is cur-

123

Author's personal copy

Constraint-driven modeling

Fig. 9 Adding guidance to
transform inconsistent models to
consistent ones. a Without
guidance, b with guidance for
B3

(a) (b)

rently considerable progress in suggesting repairs to individ-
ual inconsistencies in design models (e.g., [20,21,25–29]).
Based on a specific constraint (or a set of constraints)
and the inconsistent parts, it is thus possible to derive
modifications—like specialized transformations—that lead
to a consistent model. If such modifications can be derived,
they are proposed to the designer as a list of options,
or a suitable solution may be chosen automatically by
applying heuristics. In Fig. 9, the general idea of fixing
is illustrated for the inconsistent model version B3. The
solution space for the modeling problem is depicted in
Fig. 9a. In Fig. 9b, the derived fixes for the inconsis-
tency (i.e., the possible transformations that may be exe-
cuted to change the current model version to one within
the allowed solution space) are depicted with solid arrows
from B3 to B4, B5, and B6. If the restrictions are unam-
biguous, only a single option remains and it may be applied
automatically (much like transformation). For example, the
action 〈addmethod"dim"toclass"LightSwitch"〉 is
an option for removing the inconsistency caused by the
absence of the method dim in the LightSwitch class
and the constraint c4. Thus, using constraints does not only
expose inconsistencies, but it also enables user guidance to
help understanding and solving them [30]. However, models
may contain a large number of inconsistencies that makes
manually fixing them one by one—even with guidance—
practically impossible. In such cases, the use of fully auto-
mated approaches is inevitable. Thus, deciding which fix-
ing strategy to use (i.e., guided manual fixing or automated
fixing) strongly depends on the specific situation (i.e., the
present inconsistencies). Let us now discuss how both strate-
gies support our approach and for which typical scenarios
they are most suitable.

4.1 Guided fixing

In our running example, we used transformations for gener-
ating the constraints from specific model elements such as
messages. We believe that incorporating source model data

make a constraint much more specific and expressive when
presented to the designer than a manually written, generic
constraint that relies on metamodel data and functions (e.g.,
the constraints use actual method names).

We discussed above that structural dependencies between
constraints do not occur and that their validation is inde-
pendent. However, logical dependencies between constraints
in terms of required model characteristics and correspond-
ing model elements may occur (e.g., c1 requires a class
LightSwitch and c2–c3 require specific methods in this
class). Without a LightSwitch class, the model cannot
be consistent. However, the constraints c2–c3 are consistent
if there is no such class at all or if the specific class pro-
vides the methods. This means that choosing an option that
removes the inconsistency of c1 (i.e., the addition of a new
and empty class named LightSwitch) leads to the con-
straints c2–c3 being inconsistent until they are addressed by
adding the required methods to the new class. Creating addi-
tional inconsistencies can therefore be necessary to achieve
overall model consistency. Recent research has shown that
such problem can be solved, for example using search-based
transformation in combination with constraints [31]. Other
recent studies suggest that such dependencies can be lever-
aged to decrease the number of possible actions to fix incon-
sistencies dramatically [32].

However, even without considering logical dependencies
between constraints, it has been shown that the average
number of fixes per inconsistency for common UML well-
formedness constraints in industrial models stays below 10
[21]. Thus, a newly introduced single inconsistency can be
easily handled through guided fixing. Moreover, the time
for calculating possible fixes typically remains under 0.1
seconds with common approaches such as [33] or [21].
Therefore, chaining the incremental constraint generation
and management of CDM with existing semi-automatic fix-
ing approaches produces a modeling environment in which
designers are informed about both inconsistencies and pos-
sible options for resolving them live during modeling. Note
that a variety of such approaches is available for use with

123

Author's personal copy

A. Demuth et al.

CDM. For example, there are search-based approaches that
find possible fixes by exploring the problem’s solution space
(e.g., [34] or [33]). Moreover, there are also incremental tech-
niques that compute possible fixes directly based on specific
inconsistencies (e.g., [21]).

Guidance is however not limited to inconsistencies. For
each constraint, its source as well as the locations where it is
validated are available and can be presented to the designer.
When the source model is edited during development, the
constraints that are affected by those changes can also be
highlighted. When a designer, for example, adds a new mes-
sage to a sequence diagram with a name that already has a
matching method in a class diagram, the highlighted con-
straint shows him or her the existing method immediately.
The designer can then easily decide whether this existing
method should be used (i.e., the message means the existing
method) or if a naming conflict was introduced (i.e., a new
method was planned).

4.2 Automated fixing

Although guided fixing is suitable for removing small num-
bers of inconsistencies, there may be situations in which
larger number of inconsistencies occur that are not manage-
able through fixing inconsistencies one by one. As we have
briefly mentioned above, constraints may come from diverse
sources. For example, they may be derived from a metamodel
and may be used for validating the structural integrity of a
specific metamodel instance (i.e., model) in a flexible mod-
eling tool (e.g., [35–37]). In such a case, a generic constraint
derived from the metamodel could, for example, check that
all modeled classes provide exactly one name. Another con-
straint may check that no class has more than one parent class.
Note that such generic constraints have to be enforced for
every single class present in the restricted model. Indeed, if a
new concept is then introduced in the metamodel (e.g., a new
single-valued attribute for classes called “description"), this
would result in the generation of a new generic constraints
that required all classes to provide such a field. For every sin-
gle class in the restricted model, an individual inconsistency
is detected. Indeed, the number of inconsistencies that occurs
due to such a change is often not manageable manually.

There has been significant progression in the field of
automated model healing and fixing of inconsistencies. For
instance, Anastasakis et al. [27] presented an approach for
the transformation of UML models and OCL constraints to
Alloy that allows for sophisticated reasoning over UML mod-
els. After using Alloy for analyzing the model and extend-
ing it automatically to establish consistency, the extended
model can be transformed from Alloy back to UML using
the approach presented by Shah et al. [28]. Kuhlmann and
Gogolla [29] use a similar approach for transforming UML
models and OCL constraints to relational logic for doing

SAT-based reasoning with Kodkod [38] and transforming the
resulting model back to UML.

A different approach for fixing inconsistencies was pre-
sented by Xiong et al. [39]. They developed a language called
Beanbag that allows the definition of constraints and fixing
behavior at the same time. When a constraint becomes incon-
sistent, its associated fixing behavior is used to derive a set of
model changes that are executed to restore consistency. The
Beanbag language is quite similar to standard OCL, but pro-
vides several additional language constructs that allow con-
straint authors to also specify how issues may be solved. Our
approach can be used to generate such Beanbag programs
instead of pure OCL constraints. Note that with our approach,
the fixing-related parts may also be generated using specific
source model data, potentially allowing for more precise or
more efficient calculation of fixes.

In principle, it is thus possible to chain CDM and the
discussed approaches to automatically keep target models
consistent at all times.

4.3 User-centric approach

As we have discussed, CDM may be extended by both
guided manual fixing and automated fixing in principle. How-
ever, usually one approach is more favorable than the other
depending on the various aspects (e.g., the number of incon-
sistencies, kinds of inconsistent constraints). The decision
which approach is more suitable is non-trivial and may also
depend on the designer’s abilities. Therefore, we believe that
it should be the designer to decide whether an inconsistency
(or multiple inconsistencies) should be fixed manually or
automatically.

As discussed in Sect. 4.1, changes in the source model
will often lead to a small number of new inconsistencies that
can be fixed manually because of typically small numbers of
available options. However, as discussed in Sect. 4.2, there
may also be scenarios in which multiple inconsistencies—
which are, however, based on a single kind of constraint—are
introduced by a single source model modification. In that sce-
nario, the use of fully automated approaches will often be the
best solution. Note that using an automatic approach based
on sophisticated reasoning is always an option for getting a
valid model quickly.

5 Additional benefits of constraint-driven modeling

Above, we described the main benefits of CDM on which
we also focused in three case studies we used for evaluation
(see below). There are, however, additional benefits that are
beyond the scope of this paper. Next, we introduce additional
scenarios in context of rule-scheduling, model merging, and
bidirectionality.

123

Author's personal copy

Constraint-driven modeling

(a) (b)

Fig. 10 From dependent (a) to independent (b) transformation rules

5.1 Rule-scheduling and race conditions

Now, let us consider an example where two transforma-
tion rules tm1 and tm2 are working with the same generated
model and the order of rule execution is important. For
example, the sequence diagram in Fig. 1a contains an
instance of the class LightSwitch. Therefore, let us
assume that transformation rule tm1 generates a corre-
sponding class if no such class exists in the diagram in
Fig. 1b. As we have discussed in Sect. 2, the sequence
diagram requires the class LightSwitch to provide a
method activate. Let transformation rule tm2 generates
this method in LightSwitch.5 When the transformations
are performed, it is crucial that tm1 is executed before tm2

to ensure that the class LightSwitch exists before the
method activate is added. This issue is illustrated in
Fig. 10a where the bottom transformation encounters an error
after the execution of tm2. If the rule tm1 is still executed, the
resulting model B will contain an empty LightSwitch
class because only tm1 was executed successfully. If the exe-
cution of rules is stopped after the error, no model is gener-
ated at all. Defining the order of rule execution manually is
tedious and a constant source of error. Moreover, support for
defining an execution order is not a standard feature of all
transformation languages or systems [3].

The constraining approach, shown in Fig. 10b, is free
of scheduling issues because constraints cannot structurally
depend on other constraints, and the order of transformation
is not relevant for the transformation results, as discussed
in Sect. 3.3. Hence, the rules t1 and t2 we have previously
defined can be applied in any order and produce the distinct
constraints c1 and c2 in Fig. 10b. If a model does not provide
the required information for constraint validation (e.g., the
class that should be checked is not present), the validation
fails and an inconsistency is detected.

5.2 Bidirectionality and model merging

When models should be synchronized automatically, trans-
formations are often used to propagate changes from one
model to the other and perform the corresponding changes.
Let us assume that we have established transformation rules

5 We ignore the fact that such a transformation will not always lead to
satisfying results—as discussed above—for this example.

that keeps message names and method names synchro-
nized and that a link between messages and correspond-
ing methods exists. In Fig. 5a, the name of the highlighted
message has been changed from turnOff (see Fig. 1a)
to deactivate. Concurrently, the corresponding method
in the class diagram was changed from turnOff() (see
Fig. 1b) to switchOff(), as highlighted in Fig. 5b. Since
both synchronized model elements were changed (indicated
by the bold arrows), there is no way to determine in which
direction the required synchronization should be performed.
Performing a synchronization in this situation will always
lead to the loss of the changes in the generated model (i.e.,
either B ′′ overrides changes in B ′ or A′′ overrides changes
in A′ that cannot be used for a transformation in the opposite
direction afterward). A possible solution would be the con-
current execution of the transformations followed by a merge
of the updated models (A′ and B ′) and the resulting generated
models (A′′ and B ′′), as illustrated in Fig. 11a that generated
A′′′ and B ′′′. However, this requires a complex merging strat-
egy and is likely to produce models that still require manual
adaptation.

The solution of the constraint transformation approach is
shown in Fig. 11b. We can see that our approach still has
to decide which change to process first. However, because
only constraint models are updated, the restricted mod-
els A′

r and B ′
r are not changed and can therefore still be

(a)

(b)

Fig. 11 From bidirectionality (a) to unidirectional (b) constraint trans-
formation

123

Author's personal copy

A. Demuth et al.

processed to perform constraint updates in the opposite
direction, leading both constraint models ca and cb being
updated. With our approach, no immediate merging (either
automated or manual) is required when restricted models are
edited and following source model changes lead to constraint
updates.

After the constraint model updating took place in the
example, there are two new constraints: (i) message number 2
in Fig. 5a should be named switchOff (from Fig. 5b), and
(ii) the name of the method switchOff in Fig. 5b should
be changed to deactivate (from Fig. 5a). The designer
can then decide which of the elements should be renamed.

6 Case studies

To assess the feasibility and the applicability of CDM, we
conducted three case studies with two goals: (i) demonstrate
the applicability of CDM to various domains, and (ii) assess
the efficiency and performance of our constraint manage-
ment approach (i.e., the incremental transformation of con-
straints). For the former goal, the three case studies are large-
scale industrial-grade models and span across the domains of
object-oriented software modeling, metamodeling, and soft-
ware product lines. CDM was used to generate various kinds
of domain-specific constraints. For the latter, we performed
various source model changes to trigger changes in the set of
enforced constraints (e.g., constraint addition). In Fig. 12, the
different sources of change (Δ) in our approach are depicted.
Note again that the application of CDM consists of two core
phases: (i) constraint management, and (ii) constraint vali-
dation. The first phase is triggered by changes of the source
model (ΔA) and includes an update of the applied con-
straints (ΔC). The second phase—validation—is triggered
by changes of either the constraints (ΔC) or the restricted
model (ΔB).

In principle, we need to demonstrate performance for both
phases—including the validation triggered by changes of the
restricted model (ΔB). However, the latter can be omitted
for two reasons. First, this work uses an existing consis-
tency checker that was already thoroughly evaluated on 34
large-scale industrial models of up to 162,237 model ele-
ments and complex constraints in [17,40]. It was shown that
most changes to a restricted model are processed in less than
one millisecond and that the validation is faster than typi-
cal batch-validation performed by conventional consistency
checkers. Second, this paper does not prescribe any consis-
tency checker in particular. In principle, any technology may
be used. The one used in this paper is merely a proof that

Fig. 12 Possible changes in
CDM

current state of the art is sufficiently progressed to support
the second phase. Thus, the following focused on assessing
the first phase (i.e., processing of ΔA and ΔC) in our perfor-
mance tests and captured the time needed for handling the
source model change and generate, remove, or update con-
straints. However, the time for constraint validation triggered
by the resulting changes of constraints (ΔC) was also mea-
sured, and in our analysis, we provide values for both con-
straint management only and constraint management with
constraint validation. The observed times for the validation
of constraints were compared with the previously observed
validation times for manually written constraints to assess
how using generated constraints affects the validation per-
formance of existing consistency checking technologies.

6.1 Prototype implementation

To evaluate the three case studies, we implemented a proto-
type tool. The core component of the tool is a constraint trans-
formation engine that supports arbitrary EMF-based source
models and generates OCL constraints. For efficient con-
straint validation, we employ the Model/Analyzer [16] con-
sistency checking framework which we slightly adapted to
support EMF-based models in general instead of only UML
models. Note that the constraint validation may be done by
any consistency checker that supports EMF models and OCL
constraints. However, we chose the Model/Analyzer because
it was evaluated with design models that were used in two of
the case studies presented below (i.e., Case Study I and Case
Study II). Thus, observed validation times may be compared
to previously observed data. Change trackers are used to
observe models and inform the transformation engine or the
consistency checker, respectively, about changes. The trans-
formation engine is capable of handling arbitrary numbers
of source and restricted models concurrently.

6.2 Case Study I: model to model constraint

For our first case study, we apply CDM to typical object-
oriented software models and generate constraints from dif-
ferent diagrams, as we have already illustrated in Sects. 2
and 3. In particular, we use individual parts (i.e., diagrams)
of large-scale UML models from which we generate con-
straints that restricts other parts of the same model.

6.2.1 Case study models

For this case study, we employed 22 of the industrial models
we previously used in [17,40]. Note that those 22 models
were selected because they include different types of dia-
grams from which constraints that restrict other diagrams
can be generated (i.e., we did not use design models that
include diagrams of only one type).

123

Author's personal copy

Constraint-driven modeling

The models include class diagrams, sequence diagrams,
state charts, use-case diagrams, and various other UML dia-
grams. The model sizes varied between 337 and 27,751 top-
level model elements. That is, instances of primitive data
types, for example, were not counted.

6.2.2 Transformation rules

We used the transformation rule t2 shown in Listing 2 to
generate constraints from Message instances in sequence
diagrams, as discussed in Sect. 3.

6.2.3 Performance evaluation

For assessing change processing performance, we used three
different tests:

Test I Replacing ambiguous transformations—as discussed
in Sect. 3

Test II Replacing merges—different sources restrict a single
model

Test III Restricting multiple models—one source restricts
different models

Test I simulated simple unidirectional transformations in
the scenario we described in Sect. 3. Note that UML models
usually consist of one single model that includes all data
and that different diagrams only represent different views on
that data. Therefore, we use the same model as source and
restricted model in Test I (this being another benefit of our
approach). The test was executed for all available models that
included elements matching the transformation rule context.

Test II assessed the performance of our approach in sce-
narios where multiple source models are used to generate
various constraints that are restricting the same model (i.e.,
merges of generated models would be required with tra-
ditional approaches). This test shows the behavior of the
approach when complexity is increased and more models
become involved. As in Test I, we use one model as source
and restricted model at the same time. Other models are
used as additional source models from which additional con-
straints on the restricted model are generated. The same mod-
els as in Test I were used as source and restricted models, and
the selection of additional source models was done randomly.
The test was done with five and ten concurrent source models.

Test III simulated scenarios where a single model is
the source for transformations that produce constraints for
different, concurrently active restricted models. Again, the
same models as in Test I were used as source models. The
restricted models were selected randomly, and groups of five
and ten concurrent restricted models were used. This test
was performed to assess the scalability and the efficiency
of our approach when the numbers of generated constraints

and required constraint validations as well as the required
infrastructure’s complexity increase.

Performed source model changes. For all tests, randomly
selected single model elements were removed from a source
model and then added back to the source model, which forced
an incremental constraint model update. That is, the update of
exactly one constraint for Test I and Test II and the update of at
least one constraint for Test III. For Test II, the source model
on which a change was performed was also chosen randomly
for every performed change. Note that we only performed
changes that updated constraints which were actually vali-
dated on at least one restricted model element. This ensures
that all changes impact source models used during transfor-
mation. Note also that complex model changes, such as the
removal of a whole package, can be expressed as a sequence
of atomic changes. Therefore, the results we obtain for atomic
changes are sufficient to predict the effects of complex model
changes.

All the tests and case studies below were run on an Intel
Core i5-650 machine with 8GB of memory running Windows
7 Professional. Each model change was executed 100 times,
and we used the median values for our analysis.

Results We now discuss the observations made for the indi-
vidual tests.

Test I In Fig. 13a, the median times for adding a
source model element are depicted. For the transformation
time (i.e., the time required for constraint generation), the
observed processing times are steady at about 1 ms and
slightly increase for large models of over 27,000 model ele-
ments to about 10 ms. For the total processing time including
both transformation and constraint validation, we observed a
correlation with the model size. This is based on the fact

(a)

(b)

Fig. 13 Results for Test I. a Addition processing times, b removal
processing times

123

Author's personal copy

A. Demuth et al.

that we generated generic constraints that were validated
for all instances of a specific type. Therefore, the total time
required for validation increases with the number of elements
matching the constraint context. However, the dashed line in
Fig. 13a shows that the validation time per constraint context
matching element was steady at under 1 ms. These observa-
tions are consistent with those made in [17] and indicate that
the constraints generated with CDM allow for the same quick
validation as manually written constraints. Note that the total
processing times even for large models reach a maximum of
about 100 ms.

The median times for removing a source model element
are depicted in Fig. 13b. Note that the median total process-
ing time has a maximum of about 10 ms even for the largest
models. The time required for constraint validation is negli-
gible because there is no validation required when removing
constraints. We observed a correlation between the num-
ber of constraints generated from the source model and
the time required for finding and removing the constraints
based on the removed source model element in the test. The
spikes in the graph for models between 8,000 and 20,000
model elements support this assumption and indicate that the
model characteristics have a stronger effect than the model
size.

Test II In Fig. 14a, the processing times for the addition
of an element to one out of five concurrent source models
are shown. Note that there is no correlation between the total
source model size and the median processing times.

In Fig. 14b, the processing times for ten concurrent source
models are depicted. Again, there is no correlation between
the total source model size and the processing time. Addi-
tionally, note that the processing times for both five and ten
source models are typically within 10 and 100 ms—similar
to the results of Test I in Fig. 13a—indicating that the addi-
tional infrastructure required for handling concurrent source
models does not lead to reduced efficiency.

In Fig. 14c, the median required processing time for the
addition of a source model element as a function of the num-
ber of restricted model elements matching the affected con-
straint’s context (i.e., the number of constraint validations
triggered by the change) is depicted. As for Test I, both
the validation time per constraint matching element and the
transformation time are steady at about 1 ms and reach a max-
imum for large models of 5 ms. The total processing time
of course increases with the number of required validations.
For the removal of a source model element, both the process-
ing times for validations per matching element and for the
transformation remain at under 1 ms and the maximum total
processing time stays under 100 ms (figures are omitted).

Test III The observed processing times for the addition of
an element to the source model are depicted in Fig. 15a. The
results for tests with both five and ten concurrent restricted
models are combined, and the times are drawn as a function of

(a)

(b)

(c)

Fig. 14 Results for Test II. a Addition processing times (5 source mod-
els), b addition processing times (10 source models), c addition process-
ing times for different effects on restricted model

(a)

(b)

Fig. 15 Results for Test III. a Addition processing times for different
change effects, b addition processing times for different restricted model
sizes

the number of constraint validations that become necessary
after the change. Note that the times for both transformation
per restricted model and constraint validation per matching
element are nearly static at about 1 ms. As in Test II, the total
processing time is determined primarily by the number of
required constraint validations.

123

Author's personal copy

Constraint-driven modeling

In Fig. 15b, the processing times for constraint validation
and transformation are depicted as a function of the combined
restricted model sizes.

For the removal of source model elements, the results
observed for Test III are similar to the results observed in
Test I and Test II. That is, processing of source model ele-
ment removal is significantly faster that element addition as
there is no need for generating and validating constraints
(figures are omitted).

6.3 Case Study II: metamodel to model constraints

Model transformations are commonly used in metamodeling
when co-evolution of metamodels and models is required
[41] (i.e., when models must be adapted after their meta-
model was changed). As a second case study, we applied
CDM to metamodeling and use it for addressing the impor-
tant issue of co-evolving metamodels and model constraints
[42]. While there is much research done about co-evolution of
metamodels and models, for instance [41,43], less work was
done to co-evolve constraints. This case study demonstrates
how CDM can be used to address the issue of metamodel-
knowledge-based constraints that may become incorrect after
metamodel changes.

In this scenario, our approach complements existing
metamodel and model co-evolution approaches. Note that
required model updates often cannot be performed automati-
cally because of various uncertainties like arbitrary naming of
elements or cardinalities. For example, adding a mandatory
attribute supertype to all Element objects adds the con-
straint 〈contextElementinv : self.supertype <>

null〉. Even though a common supertype object can be
inserted automatically to all Element instances, the cor-
rect solution still depends on the specific element and the
desired object hierarchy. Thus, trying to automate such
model updates will inevitably make the intervention of the
designer necessary. By using CDM, constraints that are based
on metamodel knowledge are also updated automatically
when the metamodel evolves. For instance, if the cardinal-
ity of the attribute supertype is changed from [1..1]
to [1..*] to allow multiple inheritance, the constraint is
updated to 〈contextElementinv : self.supertype
−> size()〉 = 1. Thus, CDM keeps metamodel-based
constraints correct which provides valuable information for
performing co-evolution of design models.

6.3.1 Case study models

For this case study, we used the UML metamodel and 28
industrial UML models from [17]. On the first glance, the
UML meta model may not appear to be an ideal choice
because it is rarely used for co-evolution. Nonetheless, for
measuring the performance of our approach, the UML is as

suited as any meta model. The UML metamodel is clearly
a sophisticated and complex metamodel for defining vari-
ous types of diagrams related to object-oriented software
engineering artifacts. And it is also very large (i.e., the
UML metamodel was given as Ecore model which con-
tained 6583 model elements). If our approach scales for
UML model/meta model evolution, then this should be
convincing.

6.3.2 Transformation rule

The UML metamodel is defined with the Meta-Object
Facility (MOF) [44]. The elements available in UML are
modeled as instances of the Ecore type EClass. Thus,
it is possible to define a single transformation that uses
EClass instances to generate constraints for the corre-
sponding UML elements. The rule is shown in Listing 3
(lines 1–9). For a given EClass, which must not be abstract
or an interface, it generates a constraint that is validated
for all instances of the defined UML metamodel element
(e.g., an EClass instance with the name Message is trans-
formed to a constraint that checks all instances of Message
in a UML model). Generating the invariants for the model
elements is done in two separate helper functions called
generateAttributeInvariants and generate
ReferenceInvariants for the EAttribute and
EReference instances, respectively, belonging to the
EClass either directly or through inheritance.

Function generateAttributeInvariants is
shown in Listing 3 (lines 11–17). It takes as input an ordered
set of attributes and recursively generates the invariant string
by calling the helper generateAttributeInvariant
with the first available attribute and itself with the remaining
set of attributes.

For individual attributes, the helper generate
AttributeInvariant only creates a statement for
checking cardinality by calling the helper cardinality
Statement, as shown in Listing 3 (line 19).

The helper cardinalityStatement generates
invariants based on an associations lower and upper bounds,
as shown in Listing 3 (lines 21–41). For unbounded asso-
ciations (i.e., [0..1] for single-valued and [0..*] for multi-
valued associations), the helper simply returns "true", and
for bounded associations, the helper returns statements to
check that an element provides the correct number of results
for the given association.

Function generateReferenceInvariants, as
shown in Listing 3 (lines 43–49), is a recursive helper similar
to that for attributes, and thus, we omit a detailed discussion
for space reasons.

To generate the invariants for an individual reference,
the helper generateReferenceInvariant, shown in
Listing 3 (lines 51–52), not only generates a cardinality

123

Author's personal copy

A. Demuth et al.

1 rule EC
2 from
3 s : MetaModel!EClass (
4 not s . isAbstract and not s . isInterface)
5 to
6 t : ConstraintModel!Constraint (
7 context <− s .name;
8 inv <− generateAttributeInvariants (s . eAllAttributes−>

asOrderedSet ()) + " and " +
generateReferenceInvariants (e . allReferences−>
asOrderedSet ()) ;

9)
10
11 helper def generateAttributeInvariants (s :OrderedSet(EAttribute)) :

String =
12 i f s−>size ()=0
13 then
14 "true"
15 else
16 let x=s−>f i r s t () in generateAttributeInvariant (x) + " and "

+ generateAttributeInvariants (s−x)
17 endif
18
19 helper def generateAttributeInvariant (s : EAttribute) : String =

cardinalityStatement (s .upperBound, s .lowerBound, s .name)
20
21 helper def cardinalityStatement (l : Integer ,u: Integer ,n: String) :

String =
22 i f (l=0 and u=−1) or (l=0 and u=1)
23 then
24 "true"
25 else
26 i f l=1 and u=1
27 then
28 "self ."+n+"<>null"
29 else
30 i f l=0
31 then
32 "self ."+n+"−>size ()<="+u
33 else
34 i f u=−1
35 "self ."+n+"−>size ()>="+l
36 else
37 "self ."+n+"−>size ()>="+l+"and self ."+n+"−>size

()<="+u
38 endif
39 endif
40 endif
41 endif
42
43 helper def generateReferenceInvariants (s :OrderedSet(EReference)) :

String =
44 i f s−>size ()=0
45 then
46 "true"
47 else
48 let x=s−>f i r s t () in generateReferenceInvariant (x) + " and "

+ generateReferenceInvariants (s−x)
49 endif
50
51 helper def generateReferenceInvariant (s :EReference) : String =
52 cardinalityStatement (s .upperBound, s .lowerBound, s .name) + " and

" + oppositeStatement(s , s . opposite)

Listing 3 Transformation rule and helper functions to generate
constraints for UML metamodel types

statement, as it is done for attributes, but it also generates
semantic invariants that check the correct implementation of
opposite references. The latter is done through the helper
oppositeStatement, which is shown in Listing 4.

Since OCL handles single-valued and multi-valued fields
differently, the statement that checks the presence of opposite
references must distinguish between different cardinalities
for both the source and the opposite reference.

1 helper def oppositeStatement(x:EReference ,y:EReference) : String =
2 i f y=null
3 then
4 "true"
5 else
6 i f x.upperBound=1
7 then
8 i f y.upperBound=1
9 then

10 "self ."+x.name+"."+y.name+"=self "
11 else
12 "self ."+x.name+"."+y.name"+"−>includes(self)"
13 endif
14 else
15 i f y.upperBound=1
16 then
17 "self ."+x.name+"−>forAll (z | z."+y.name+"=self)"
18 else
19 "self ."+x.name+"−>forAll (z | z."+y.name+"−>includes(

self))"
20 endif
21 endif
22 endif

Listing 4 Helper function oppositeStatement

6.3.3 Performance evaluation

For our performance evaluation, we use a basic setup with a
single source and a single restricted model: the UML meta-
model is used as source model that restricts a single UML
model. Each of the industrial UML models from Case Study
I was used as restricted model.

Performed source model changes. For the performance
test, we removed and added existing attributes and refer-
ences from/to a UML metamodel element (e.g., Class,
Message, InstanceSpecification). This was done
for 100 randomly selected elements and attributes/references
in the UML metamodel. Note that for our statistics, we
ensured that all changed metamodel elements were actually
instantiated in the restricted model.

Results The observed results for this case study are depicted
in Fig. 16. Not surprisingly, the time required for constraint
management only (i.e., transformation of constraints without
constraint validation, or the removal of existing constraints)
is steady for all restricted models, regardless of their size.

For constraint validation, on the other hand, we observed
that the required time increases with the restricted model size.
Note that this is based on the fact that the generated con-
straints have to be validated not only one time, but once for
every restricted model element that matches the constraint’s
context (e.g., all Class instances), and larger restricted
models typically have higher numbers of those matching
elements.

However, the median total validation time for a restricted
model of just under 10,000 model elements was still below
500 ms for a source model change that required the constraint
to be validated for an average of 200 different elements. Dur-
ing the transformation, data from in average 107 different

123

Author's personal copy

Constraint-driven modeling

(a)

(b)

(c)

Fig. 16 Results for Case Study II. a Metamodel element addition
processing times, b metamodel element removal processing times,
c average number of matching restricted model elements per constraint

metamodel elements were processed on average (i.e., imply-
ing that the transformations were far from trivial).

The spikes in the solid lines showing the total processing
times in Fig. 16a, b are consistent with the average numbers
of constraint matching elements in the respective restricted
models shown in Fig. 16c. Note that the validation time per
constrained target model element (e.g., the time for the val-
idation of a single Class instance), shown by the dashed
line in Fig. 16a, b, remains nearly unchanged for different
restricted model sizes.

6.4 Case Study III: software product line to product
constraints

Software Product Lines (SPLs) [45] have become popular
as they foster systematic software reuse and support sim-
ple configuration of products. In this case study, we apply
CDM to SPLs by: i) generating constraints that ensure the
correctness of configured products, and ii) updating those
constraints during SPL evolution.

Hierarchical feature models are commonly used in SPLs
to express the different features (i.e., functionalities and
capabilities) products may have and how these features are
related [46]. Different kinds of associations between features
have been discussed in literature that define how features are

related and how they may be combined in a specific prod-
uct (e.g., [45–50]). For example, the selection of a feature
F1 in a product requires a feature F2 to be also selected
(mandatory relation), or that the selection of F1 requires at
least / exactly one of the features F3 and F4 to be selected
in a product (or / xor relation). Moreover, there are cross-
tree constraints that relate features and may break the hier-
archical structure. Examples of such cross-tree constraints
are requires and excludes, which require their target features
to be selected or not selected in a product, respectively. A
product configuration consists of a set of features that are
combined to build a specific product (i.e., {F1, F2, F4}),
and the configuration is valid if none of the relationships
between features defined in the feature model are violated.
We used our prototype to generate constraints that restricted
product configurations from a feature model.

Updates of those constraints become necessary when the
feature model changes as a consequence of technological
innovation or new business strategies. Existing product con-
figurations must then be checked for consistency with con-
straints based on the updated features and relations. Defining
and maintaining the required constraints manually for a large
number of features is practically impossible and thus not an
option.

Changing a configuration that has become inconsistent
with the updated feature model is a task that requires domain
knowledge and also intuition for valuable business decisions.
Performing such an update automatically to generate a new
and consistent version of the product would lead to a correct
but also potentially impractical and thus non-saleable prod-
uct. Hence, automating this update task is not a valid solution
to the problem. However, by using the guidance provided by
the consistency checker, it is easy for product configurators
to detect the erroneous parts and find a valid and practical
fixing strategy that results in the intended product.

6.4.1 Case study system

For assessing the performance of CDM in the domain of
SPLs, we use a large-scale benchmark product line: the Bar-
bados Crash Management System Product Line (bCMSPL)
[51], which is publicly available in ReMoDD [52]. The case
study SPL is modeled using a standard feature model that
consists of 66 features and denotes a total of 440,640 valid
products.

6.4.2 Transformation rules

We used transformation rules to generate typical product con-
straints from a feature model. We focused on commonly
accepted product constraints as described, for example, in
[50]. The required constraints were generated from seven
transformation rules.

123

Author's personal copy

A. Demuth et al.

1 rule tMandatory
2 from
3 s : FeatureModel!Mandatory
4 to
5 t : ConstraintModel!Constraint (
6 context <− Product ,
7 inv <− "self . features−>includes("+s . sourceFeature+")

implies self . features−>includesAll("+s .
targetFeatures+")")

8
9 rule tOr

10 from
11 s : FeatureModel!Or
12 to
13 t : ConstraintModel!Constraint (
14 context <− Product ,
15 inv <− "self . features−>includes("+s . sourceFeature+")

implies self . features−>select (x|"+s .
targetFeatures+"−>includes(x))−>size ()>0")

16
17 rule tXor
18 from
19 s : FeatureModel!Xor
20 to
21 t : ConstraintModel!Constraint (
22 context <− Product ,
23 inv <− "self . features−>includes("+s . sourceFeature+")

implies self . features−>select (x|"+s .
targetFeatures+"−>includes(x))−>size ()=1")

24
25 rule tRequires
26 from
27 s : FeatureModel!Requires
28 to
29 t : ConstraintModel!Constraint (
30 context <− Product ,
31 inv <− "self . features−>includes("+s . sourceFeature+")

implies self . features−>includesAll("+s .
targetFeatures+")")

32
33 rule tExcludes
34 from
35 s : FeatureModel!Excludes
36 to
37 t : ConstraintModel!Constraint (
38 context <− Product ,
39 inv <− "self . features−>includes("+s . sourceFeature+")

implies self . features−>select (x|"+s .
targetFeatures+"−>includes(x))−>size ()=0")

40
41 rule tParent
42 from
43 s : FeatureModel!Feature (
44 s . parent<>null)
45 to
46 t : ConstraintModel!Constraint (
47 context <− Product ,
48 inv <− "self . features−>includes("+s+") implies self .

features−>includes("+s . parent+")")
49
50 rule tRoot
51 from
52 s : FeatureModel!FeatureModel
53 to
54 t : ConstraintModel!Constraint (
55 context <− Product ,
56 inv <− "self . features−>includes("+s . root+")")

Listing 5 Transformation rules for product lines

The first rule, shown in Listing 5 (lines 1–7), is executed
for all mandatory associations. Such mandatory associations
mean that every target feature must be selected in a product
if the source feature is selected. The second rule we defined,
shown in Listing 5 (lines 9–15), is used for or-associations
that require at least one of the target features to be selected in

a product if the source is selected. The third rule for xor-
associations, shown in Listing 5 (lines 17–23), is similar
to the second rule. Note that for xor-associations, exactly
one instead of at least one target feature must be selected
if the source is selected. The fourth and the fifth rule are
used to transform, requires, and excludes cross-tree con-
straints, as shown in Listing 5 (lines 25–31) and Listing 5
(lines 33–39), respectively. These two rules are very similar
to t Mandatory (Listing 5, lines 1–7) and t Xor (Listing 5,
lines 17–23) relations. For t Requires, only the source ele-
ment type was changed to Requires. For t Excludes, the
source element type was changed to Excludes and the size
of the result must be equal to 0.

The sixth rule, shown in Listing 5 (lines 41–48), gener-
ates constraints for the generic product invariant that a feature
(that is not the root feature) may only be selected in a product
if its parent feature is also selected. The rule is guarded so
that it is only executed for features that actually have a par-
ent (i.e., all features but the root feature). The seventh rule,
shown in Listing 5 (lines 50–56), generates a constraint that
requires the root feature of the feature model to be selected
in a product.

6.4.3 Performance evaluation

For assessing the performance of our CDM implementation
in the domain of product lines, we used a setup with a feature
model as source model and a product as target model.

Performed source model changes. For this case study, we
measured the time required for processing the addition/re-
moval of an association or cross-tree constraint to the feature
model. For each of the existing 42 associations and cross-tree
constraints in the bCMSPL feature model, we performed the
removal and the addition of the element. For our tests, we
used products that were composed of randomly selected fea-
tures. The used products included the empty product (i.e.,
zero features selected) and the fully configured product (i.e.,
all 66 features selected).

Results The results for our tests are shown in Fig. 17. For the
addition of a new association or cross-tree constraint, Fig. 17a
shows that the total time for processing in all tests stayed
below 5 ms. Note that the time required for the transformation
(i.e., the creation of the constraint) remains nearly unchanged
at under 1 ms. The time required for constraint validation
increases with the number of selected features because the
constraints we generate contain expressions that require an
iteration over all selected features.

For the removal of associations or cross-tree constraints
from the feature model, Fig. 17b shows that the total process-
ing time stays under 1 ms for all performed changes. Again,
note the constant time of about 0.1 ms required for the
transformation (i.e., removal of the existing constraint that

123

Author's personal copy

Constraint-driven modeling

(a) Association addition processing times

(b) Association removal processing times

Fig. 17 Results for Case Study III. a Association addition processing
times, b association removal processing times

becomes obsolete after the change). Because there is no
actual validation required for the removal of a constraint,
the slope of the line indicating the validation is less than
for the addition. However, the slope is still positive because
the consistency checker must discard data that were captured
during previous validation of the removed constraint and the
amount of that data correlates with the number of selected
features.

7 Discussion

In this section, we discuss the results of the presented case
studies: the scalability, the correctness, and possible threats
to validity.

7.1 Key challenges addressed

Let us briefly revisit the three key challenges we identified
in Sect. 1 and discuss how they are addressed in CDM.

As we have shown, CDM does not override model changes
done by designers but it updates constraints. In doing so,
CDM ensures that decisions made by designers are never lost.

In case of uncertainties, CDM avoids premature design
decisions by generating and updating constraints to pro-
vide valuable information for finding the most suitable target
model instead of generating a correct but probably not ideal
target model.

By using CDM, bidirectional transformations can be
replaced with unidirectional transformations. This reduces
scheduling issues, race-conditions, and merging issues when
handling concurrent model changes because the restricted
models are not changed automatically and thus also the order
of constraint updates is not relevant.

7.2 Scalability

We demonstrated the feasibility of CDM by implementing a
prototype tool. The applicability was demonstrated by apply-
ing the approach to three different domains through our case
studies. Each case study evaluated a range of small to large
systems.

The observed transformation times remained nearly con-
stant for all three case studies even when model sizes
increased significantly, which indicates that the core aspect
of our approach can be performed efficiently. The observed
overall processing times (including constraint validation)
show that even for large models, our approach works effi-
ciently. The results demonstrate in a proof-of-concept man-
ner that there exists at least one consistency technology that
supports CDM in a scalable manner.6

Case Study I and Case Study II were conducted with the
same models that were previously used for evaluating the
employed consistency checker. The observed constraint val-
idation times indicate that times required for validating gen-
erated constraints are comparable to those required for val-
idating manually written constraints. Thus, generated con-
straints do not necessarily impose additional complexity or
require higher validation effort.

7.3 Correctness aspects

Let us now discuss various aspects that may affect the correct-
ness of our approach. For traditional model transformations,
errors in both the source models and the applied rules lead to
errors in the generated model. Such errors obviously affect
CDM also because through the likely involvement of humans
during source model creation and transformation rule writ-
ing, it is not possible to guarantee correct constraints being
generated and enforced. The correctness of the enforced con-
straints and the provided user guidance is thus a factor of the
correctness of: (i) the source model, (ii) the transformation
rules, (iii) the transformation engine, and (iv) the consistency
checker.

Even if invalid source models or transformation rules lead
to incorrect constraints, our approach has substantial benefits
over generating a model directly: incorrect results do not
affect the restricted model directly.

Designers may inspect constraints that seem incorrect and
may decide to ignore them, meaning that incorrect or contra-
dictory constraints do not prevent designers from construct-
ing the desired model. By tracing back the origin of generated
constraints (which is possible in model transformation and
supported by CDM), designers can also use faulty constraints

6 Note that the validation is not meant to demonstrate superior perfor-
mance of the employed consistency checker but only to demonstrate
feasibility of CDM.

123

Author's personal copy

A. Demuth et al.

to detect and report or fix errors in the source model or the
transformation rules [21].

7.4 Threats to validity

Although it seems intuitive that decisions made by domain
experts in situation with very specific problems and with
guidance are more trustworthy than automated decisions
based on generalized knowledge or heuristics, we have yet
to show that the quality of the resulting models is higher
or that our approach leads to quicker results. Additionally,
we have not investigated to which degree guidance and sug-
gested options reduce the time needed for design decisions
or finding inconsistencies. However, those questions are not
specific for CDM, but they apply to all approaches that focus
on semi-automatic fixing of inconsistencies.

In Sect. 3, we illustrated the application of CDM and
assumed that transformation rules are executed incremen-
tally. Even though there is significant progress in terms of
incremental execution of transformations for common lan-
guages such as ATL or QVT, there are transformation lan-
guages for which such support is not available. However,
we have discussed in Sect. 3.3 that individual constraints
are structurally independent. This simplifies the implemen-
tation of incremental rule execution dramatically as it allows
tools to execute a transformation rule with a given source
model element in a sandbox-like environment (i.e., execute
the transformation rule with a temporary and empty tar-
get model) and then add the resulting constraint to the set
of applied constraints. Note that the order of rule execu-
tion does not matter. Moreover, if transformation rules are
executed individually, then this also simplifies the back-
tracking later (i.e., if it is believed that a constraint is
incorrect).

8 Related work

Model Transformation is a very active field of research, and
several topics related to our work have been discussed.

Comparison to Existing Constraint Generating Appro-
aches. Let us now discuss what separates the CDM approach
from existing approaches that focus on model transforma-
tions and rely on constraints.

The major difference between CDM and approaches such
as, for example, the ones presented by Büttner et al. [22] or
Cabot et al. [23] is that the goals of these approaches are
different from those of CDM. While CDM helps avoiding
uncertainties and premature decisions during transformation
rule writing in order to avoid the generation of unintended tar-
get models, other approaches typically generate constraints
in order to do verification or validation of transformation
rules through sophisticated reasoning over those transforma-

tion rules and target models (e.g., derive an optimal order of
execution for a set of transformation rules). They derive tar-
get model conditions from the transformation rules directly
through a translation. Thus, they are typically not capable of
dealing with domain-specific semantics except for what is
already expressed in the transformation rules. For the trans-
formation in Listing 1, for example, those approaches may
generate a constraint that requires a Method with a spe-
cific name and a specific owner to be present in the target
model after the transformation was executed with a given
Message. This constraint ensures that the transformation
rule behaves as expected. The constraint may then be used
in combination with constraints derived from other trans-
formation rules, for example to find logical contradictions
within the transformation rule, to find contradictions between
rules, or to determine the required order of execution. Note
that when those constraints are used as input for reason-
ing engines or fixing approaches, the constraints are already
based on an assumption that was made during rule authoring
to overcome an uncertainty (e.g., the desired location of the
method) and that was incorporated in the transformation rule.
With CDM, on the other hand, a constraint that a method must
be provided by the class would be generated (i.e., a differ-
ent transformation rule would be used), expressing the actu-
ally desired condition without making assumptions. Thus,
existing approaches that generate constraints from rules are
designed for different problems (e.g., ensuring syntactical
correctness of target models or checking validity of trans-
formation rules). However, those approaches are of course a
valid choice for verifying and validating unambiguous trans-
formations and may be used for verifying the transformations
used for CDM (e.g., to find out whether the applied transfor-
mations lead to contradictory constraints).

Another approach related to CDM is proposed by
Vallecillo et al. [53]. They define Tracts, contracts between
source and target models which include constraints. Using
those tracts, model transformation rules can be derived
or existing transformation rules can be tested. While this
approach is similar to CDM in that it focuses on the inten-
tions of the designer and allows for domain-specific knowl-
edge, it does not address the issue of designers being forced
to make premature decisions when writing transformation
rules. For example, it would identify the transformation rule
presented in Listing 1 as valid with respect to the target model
constraints—the solution it produces will always be valid as
the required method is present in the target model. However,
the transformation rule still relies on assumptions and it may
produce unintended target models.

Another benefit of our approach is that it is generic. It
can be used with arbitrary models, transformation languages,
constraint languages, and consistency checkers. Existing
approaches interpret rules and generate constraints for a
given transformation language and are also strongly tailored

123

Author's personal copy

Constraint-driven modeling

to a constraint language, a consistency checker, or a reason-
ing engine (e.g., [22,23]).

Generally, CDM can be seen as a bridging technology
between modeling and advanced approaches for model fixing
that rely on the existence of constraints. What makes CDM
stand out from other approaches is that it allows designers to
express desired model conditions in a reusable way (i.e., as
transformation rules) rather than inferring those conditions
from transformation rules in which assumptions have already
been made.

Model transformation and OCL constraints. Büttner et al.
[54] discussed various endogenous transformations of OCL
constraints that are necessary when either the constraint or
the model it is based on change. We apply transformations
to automatically generate such constraints from a source
model and, instead of transforming the existing constraints,
use incremental re-transformation to reflect model changes.
Simplifications of OCL constraints through transformations
were also discussed by Giese and Larsson [55]. They defined
transformation rules that could be used with our approach to
simplify the constraints that have been automatically created
and possibly make them faster to check and also easier to
read. In [56], Bajwa and Lee propose an approach to auto-
matically generate OCL constraints by transforming busi-
ness rules specified in Semantics of Business Vocabulary
and Business Rules (SBVR) [57]. Our approach of course
also supports business models as constraint source. How-
ever, we have shown that the generation of constraints is a
valid option to reduce ambiguities and provide guidance in
different domains.

Bidirectional transformation. Giese and Wagner [58] as
well as Xiong et al. [59] performed extensive research on
bidirectional transformations and synchronization in gen-
eral. Interestingly, Xiong et al. define an "undo" operation
after model updates (i.e., reverting performed changes) to
be an unwanted option for fixing introduced inconsisten-
cies because it would ignore the latest decisions made by the
designer [39]. Indeed, for automated fixing without human
intervention, making such an assumption is necessary as oth-
erwise a simple "undo" of the latest change would typically
be the best solution that removes all inconsistencies with-
out any side effects (i.e., introducing new inconsistencies
through fixing existing ones). However, a designer’s deci-
sions can be wrong, and therefore, we believe that present-
ing the "undo" option in addition to other possible fixes is
necessary to address this possibility. Regarding language
support for bidirectional transformations, Sasano et al. [60]
developed a system to perform bidirectional transformations
with ATL, and Stevens [8] focused on bidirectionality for
QVT. In general, we tackle the complexity of bidirectional
transformations by using unidirectional transformations that

generate constraints—without tailoring our approach to a
specific transformation language or specialized transforma-
tion engines, and without deriving constraints from target
model generating transformation rules. Updating one of the
involved models, then changes its own consistency status and
potentially lead to updates of constraints on the other model.
The involved models are synchronized if they are both free
of inconsistencies. As we have shown, the risk of overriding
changes because of the change processing order is eliminated
as we only update constraints automatically and the designer
ultimately decides how the models should be adapted. Cic-
chetti et al. [61] developed the bidirectional transformation
language JTL that supports non-bijective transformations and
change propagation. JTL generates constraints by translating
user-defined transformation rule and it uses answer set pro-
gramming (ASP) to find models that match those constraints.
The translation of transformation rules to ASP constraints
can be interpreted as a transformation of those rules. Thus,
JTL could be seen as an application of CDM chained with
automatic model finding where the user-defined transforma-
tion rules are used as source model to generate constraints
through the execution of other transformation rules (i.e., rules
that capture the translation semantics).

Incrementality and execution speed of transformations.
Jouault and Tisi [62] proposed an approach to make ATL
transformations incremental. They achieve incrementality by
using scopes built during OCL expression execution to deter-
mine which rules have to be re-executed after source model
changes. We make use of automatically created scopes in
the same way to determine which constraints have to be re-
created in our prototype and also for finding constraints that
have to be re-validated by the consistency checker [16]. In
[63], Tisi et al. propose the lazy execution of transforma-
tions, which eliminates the need for an initial transformation
of the entire source model to speed up the process for large
source models, which is also the performance bottleneck of
our prototype.

Product line constraints. The effect of feature model
changes on the set of possible product configurations has
been investigated by Thüm et al. [64]. While they used SAT
solvers to find out how the set of all possible configurations
is affected, we focused on existing products and used our
approach to check whether they are still valid after feature
model changes and to provide guidance for fixing possible
inconsistencies.

We derived constraints based on standard rules as
described in [50]. However, our approach of course also
supports the generation of constraints for product line
approaches that use additional feature model concepts such
as feature group cardinalities, as described by Czarnecki et al.
in [65].

123

Author's personal copy

A. Demuth et al.

Design space effects of constraints. Saxena and Karsai [66]
published a MDE-based approach for design space explo-
ration in which constraints are used to describe invariants of
valid models. Our approach is ideal to generate constraints
for design space exploration algorithms. The source of these
constraints may be the metamodel to which the generated
model must conform or also an already existing partial model
that is either provided by the designer as input for the explo-
ration algorithm or generated by the algorithm itself. Our
approach also reduces the solution space and provides guid-
ance to transform an invalid solution to one that is within the
remaining solution space. Horváth and Varró [67] presented
an approach for design space exploration using a CSP-solver
and dynamic constraints that may change over time. Com-
bined with CDM to generate and manage these constraints
automatically, their approach is perfectly suitable for finding
out whether there actually are restricted models for which all
constraints are satisfied. Moreover, their approach supports
flexible constraints. That is, it can providing solutions even if
contradictory constraints that cannot be satisfied at the same
time are used.

Finding domain design errors. Queralt and Teniente [68]
presented an approach for finding conceptual errors in UML
schemas and OCL constraints (e.g., a schema from which
some classes may never be instantiated without causing
inconsistencies). They transform UML class diagrams and
OCL constraints to logic formulas such that standard reason-
ing engines can be employed. The reasoning engine may then
be used to find a sample instantiation of the schema which is
consistent. In contrast to the automatic inconsistency fixing
approaches discussed in Sect. 4.2, the generated solution is
not a UML class diagram, but an object diagram which con-
forms to the class diagram (i.e., they use the schema defined
with UML as the metamodel for the reasoning). As with
the approaches discussed in Sect. 4.2, CDM can be used for
generating and updating the constraints which are used for
reasoning (i.e., it is an enabling technology).

9 Conclusions and future work

In this paper, we presented an incremental and generic
approach that uses model transformation to automatically
generate and update constraints.

We showed that constraints are structurally independent,
and constraint validation does not require a fixed order
of execution. We illustrated how traditional transformation
approaches produce consistent, albeit unintended models that
have to be fixed manually. By using constraints, designers are
notified about existing inconsistencies and the importance of
fixing them. We illustrated how generated constraints enable
user guidance (i.e., by using them to find possible fixes)

and encourage the use of domain knowledge to solve spe-
cific modeling problems. Even though our approach reacts
to source model changes, updates affected constraints, and
validates those constraints immediately, it does not neces-
sarily enforce any of the available fixes for inconsistencies
automatically. This sacrifice of automation allows us to toler-
ate inconsistencies—at least temporarily. However, we also
described how CDM can be used with automated incon-
sistency fixing approaches in certain situations where there
are too many inconsistencies to fix them manually. And we
discussed how model transformation issues like ambiguity,
rule-scheduling, model merging, and bidirectionality can be
addressed. In conclusion, we believe this work contributes
a novel complement to existing state of the art on model
transformation.

We validated the approach by developing a prototype
implementation and used it to conduct case studies in three
different domains, demonstrating both the feasibility and the
broad applicability of CDM. Performance tests showed that
our approach is scalable and provides instant guidance for
designers.

For future work, we plan to further investigate the usabil-
ity of the approach and to integrate approaches for automatic
inconsistency fixing in our prototype. Moreover, we plan to
do further research on finding contradictory constraints and
the effects of CDM when used with bidirectional transfor-
mations.

Acknowledgments The research was funded by the Austrian Science
Fund (FWF): P21321-N15 and P23115-N23, the EU Marie Curie
Actions—Intra European Fellowship (IEF) through project number
254965, and FWF Lise-Meitner Fellowship M1421-N15.

References

1. Schmidt, D.C.: Guest editor’s introduction: model-driven engineer-
ing. IEEE Comput 39(2), 25–31 (2006)

2. Sendall, S., Kozaczynski, W.: Model transformation: The heart and
soul of model-driven software development. IEEE Softw. 20(5),
42–45 (2003)

3. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621–646 (2006)

4. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electr.
Notes Theor. Comput. Sci. 152, 125–142 (2006)

5. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model trans-
formation tool. Sci. Comput. Program. 72(1–2), 31–39 (2008)

6. Object Management Group, Query/View/Transformation (QVT).
http://www.omg.org/spec/QVT/

7. Ruscio, D.D., Eramo, R., Pierantonio, A.: Model transformations.
In: SFM, pp. 91–136 (2012)

8. Stevens, P.: Bidirectional model transformations in QVT: seman-
tic issues and open questions. Softw. Syst. Model. 9(1), 7–20
(2010)

9. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld,
R., Jazayeri, M.: Challenges in software evolution. In: IWPSE,
pp. 13–22 (2005)

123

Author's personal copy

http://www.omg.org/spec/QVT/

Constraint-driven modeling

10. Stevens, P.: A landscape of bidirectional model transformations.
In: GTTSE, pp. 408–424 (2007)

11. Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., Heider,
W.: Flexible and scalable consistency checking on product line
variability models. In: ASE, pp. 63–72, ACM (2010)

12. van Amstel, M., Bosems, S., Kurtev, I., Pires, L.F.: Performance in
model transformations: experiments with ATL and QVT. In: ICMT,
pp. 198–212 (2011)

13. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Ter-
williger, J.F.: Bidirectional transformations: a cross-discipline per-
spective. In: ICMT, pp. 260–283 (2009)

14. Object Management Group: Object Constraint Language (OCL).
http://www.omg.org/spec/OCL/

15. Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Constraint-
driven modeling through transformation. In: ICMT, pp. 248–263
(2012)

16. Reder, A., Egyed, A.: Model/analyzer: a tool for detecting, visu-
alizing and fixing design errors in UML. In: ASE, pp. 347–348,
ACM (2010)

17. Egyed, A.: Automatically detecting and tracking inconsistencies in
software design models. IEEE Trans. Softw. Eng. 37(2), 188–204
(2011)

18. Object Management Group: Unified Modeling Language
(UML) superstructure. http://www.omg.org/spec/UML/2.4.1/
Superstructure (2012)

19. Micskei, Z., Waeselynck, H.: The many meanings of uml 2
sequence diagrams: a survey. Softw. Syst. Model. 10(4), 489–514
(2011)

20. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency man-
agement with repair actions. In: ICSE, pp. 455–464 (2003)

21. Reder, A., Egyed, A.: Computing repair trees for resolving incon-
sistencies in design models. In: ASE, pp. 220–229 (2012)

22. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL
transformations using transformation models and model finders.
In: ICFEM, pp. 198–213 (2012)

23. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and
validation of declarative model-to-model transformations through
invariants. J. Syst. Softw. 83(2), 283–302 (2010)

24. Nentwich, C., Emmerich, W., Finkelstein, A., Ellmer, E.: Flexible
consistency checking. ACM Trans. Softw. Eng. Methodol. 12(1),
28–63 (2003)

25. da Silva, M.A.A., Mougenot, A., Blanc, X., Bendraou, R.: Towards
automated inconsistency handling in design models. In: CAiSE, pp.
348–362 (2010)

26. Reder, A., Egyed, A.: Incremental consistency checking for com-
plex design rules and larger model changes. In: MoDELS, pp. 202–
218 (2012)

27. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges
of model transformation from UML to Alloy. Softw. Syst. Model.
9(1), 69–86 (2010)

28. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to
Alloy and back again. In: MoDELS Workshops, pp. 158–171
(2009)

29. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational
logic and back. In: MoDELS, pp. 415–431 (2012)

30. Nöhrer, A., Egyed, A.: C2o configurator: a tool for guided decision-
making. Autom. Softw. Eng. 20(2), 265–296 (2013)

31. Kessentini, M., Sahraoui, H.A., Boukadoum, M., Omar, O.B.:
Search-based model transformation by example. Softw. Syst.
Model. 11(2), 209–226 (2012)

32. Nöhrer, A., Reder, A., Egyed, A.: Positive effects of utilizing rela-
tionships between inconsistencies for more effective inconsistency
resolution: NIER track. In: ICSE, pp. 864–867 (2011)

33. Puissant, J.P., Straeten, R.V.D., Mens, T.: Badger: A regression
planner to resolve design model inconsistencies. In: ECMFA,
pp. 146–161 (2012)

34. Hegedüs, Á., Horváth, Á., Ráth, I., Branco, M.C., Varró, D.: Quick
fix generation for DSMLs. In: VL/HCC, pp. 17–24 (2011)

35. Manders, E.-J., Biswas, G., Mahadevan, N., Karsai, G.:
Component-oriented modeling of hybrid dynamic systems using
the generic modeling environment. In: MBD/MOMPES, pp. 159–
168 (2006)

36. Ossher, H., Bellamy, R.K.E., Simmonds, I., Amid, D., Anaby-
Tavor, A., Callery, M., Desmond, M., de Vries, J., Fisher, A.,
Krasikov, S.: Flexible modeling tools for pre-requirements analy-
sis: conceptual architecture and research challenges. In: OOPSLA,
pp. 848–864. ACM (2010)

37. Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Cross-layer mod-
eler: A tool for flexible multilevel modeling with consistency
checking. In: ESEC/SIGSOFT FSE, pp. 452–455 (2011)

38. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In:
TACAS, pp. 632–647 (2007)

39. Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H.: Sup-
porting automatic model inconsistency fixing. In: ESEC/SIGSOFT
FSE, pp. 315–324 (2009)

40. Groher, I., Reder, A., Egyed, A.: Incremental consistency checking
of dynamic constraints. In: FASE, pp. 203–217 (2010)

41. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automat-
ing co-evolution in model-driven engineering. In: EDOC, pp. 222–
231. Sept 2008

42. Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Automatically gen-
erating and adapting model constraints to support co-evolution of
design models. In: ASE, pp. 302–305 (2012)

43. Herrmannsdoerfer, M., Benz, S., Jürgens, E.: COPE—automating
coupled evolution of metamodels and models. In: ECOOP, pp. 52–
76 (2009)

44. Object Management Group: Meta-Object Facility (MOF). http://
www.omg.org/mof/

45. Pohl, K., Böckle, G., van der Linden, F.: Software Product line
Engineering: Foundations, Principles, and Techniques. Springer,
Berlin (2005)

46. Thaker, S., Batory, D.S., Kitchin, D., Cook, W.R.: Safe composition
of product lines. In: GPCE, pp. 95–104 (2007)

47. Sun, J., Zhang, H., Li, Y.-F., Wang, H.H.: Formal semantics and
verification for feature modeling. In: ICECCS 2005, pp. 303–312
(2005)

48. Mendonca, M., Wasowski, A., Czarnecki, K.: SAT-based analysis
of feature models is easy. In: SPLC, pp. 231–240 (2009)

49. Mazo, R., Lopez-Herrejon, R.E., Salinesi, C., Diaz, D., Egyed,
A.: Conformance checking with constraint logic programming: the
case of feature models. In: COMPSAC, pp. 456–465 (2011)

50. Lopez-Herrejon, R.E., Egyed, A.: Detecting inconsistencies in
multi-view models with variability. In: ECMFA, pp. 217–232
(2010)

51. Capozucca, A., Cheng, B.H., Guelfi, N., Istoan, P.: Barba-
dos crash management system. http://www.cs.colostate.edu/
remodd/v1/content/bcms-spl-case-study-proposition-based-
cloud-component-approach, 2011. [Accessed 1-August-2012]

52. ReMoDD Team: Repository for model driven development
(ReMoDD). http://www.cs.colostate.edu/remodd/v1/ (2011)

53. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann,
L.: Formal specification and testing of model transformations. In:
SFM, pp. 399–437 (2012)

54. Büttner, F., Bauerdick, H., Gogolla, M.: Towards transformation
of integrity constraints and database states. In: DEXA Workshops,
pp. 823–828 (2005)

55. Giese, M., Larsson, D.: Simplifying transformations of OCL con-
straints. In: MoDELS, pp. 309–323 (2005)

56. Bajwa, I.S., Lee, M.G.: Transformation rules for translating busi-
ness rules to OCL constraints. In: ECMFA, pp. 132–143 (2011)

57. Object Management Group: Semantics of Business Vocabulary and
Rules (SBVR). http://www.omg.org/spec/SBVR/

123

Author's personal copy

http://www.omg.org/spec/OCL/
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/mof/
http://www.omg.org/mof/
http://www.cs.colostate.edu/remodd/v1/content/bcms-spl-case-study-proposition-based-cloud-component-approach
http://www.cs.colostate.edu/remodd/v1/content/bcms-spl-case-study-proposition-based-cloud-component-approach
http://www.cs.colostate.edu/remodd/v1/content/bcms-spl-case-study-proposition-based-cloud-component-approach
http://www.cs.colostate.edu/remodd/v1/
http://www.omg.org/spec/SBVR/

A. Demuth et al.

58. Giese, H., Wagner, R.: From model transformation to incremen-
tal bidirectional model synchronization. Softw. Syst. Model. 8(1),
pp. 21–43 (2009)

59. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting paral-
lel updates with bidirectional model transformations. In: ICMT,
pp. 213–228 (2009)

60. Sasano, I., Hu, Z., Hidaka, S., Inaba, K., Kato, H., Nakano, K.:
Toward bidirectionalization of ATL with GRoundTram. In: ICMT,
pp. 138–151 (2011)

61. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: JTL: a
bidirectional and change propagating transformation language. In:
SLE, pp. 183–202 (2010)

62. Jouault, F., Tisi, M.: Towards incremental execution of ATL trans-
formations. In: ICMT, pp. 123–137 (2010)

63. Tisi M., Perez S.M., Jouault, F., Cabot, J.: Lazy execution of model-
to-model transformations. In: MoDELS, pp. 32–46 (2011)

64. Thüm, T., Batory, D.S., Kästner, C.: Reasoning about edits to fea-
ture models. In: ICSE, pp. 254–264 (2009)

65. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration
using feature models. In: SPLC, pp. 266–283 (2004)

66. Saxena, T., Karsai, G.: MDE-based approach for generalizing
design space exploration. In: MoDELS, pp. 46–60 (2010)

67. Horváth, Á., Varró, D.: Dynamic constraint satisfaction problems
over models. Softw. Syst. Model. 11(3), 385–408 (2012)

68. Queralt, A., Teniente, E.: Verification and validation of UML con-
ceptual schemas with OCL constraints. ACM Trans. Softw. Eng.
Methodol. 21(2), 13:1–13:41 (2012)

Author Biographies

Andreas Demuth received his
Bachelor’s degree in Computer
Science and his Master’s degree
in Software Engineering from
the Johannes Kepler University
Linz (JKU), Austria. Currently,
he is working as a researcher,
funded by the Austrian Science
Fund (FWF) project P23115-
N23, at JKU’s Institute for Sys-
tems Engineering and Automa-
tion. His main research interests
include model-driven engineer-
ing, especially flexible and mul-
tilevel modeling as well as model

transformations, incremental consistency checking, and evolving soft-
ware product lines.

Roberto Erick Lopez-
Herrejon is a Lise Meitner
Fellow (2012–2014) sponsored
by the Austrian Science Fund
(FWF). From 2010–2012, he
held an FP7 Intra-European
Marie Curie Fellowship (2010–
2012) on a project for consis-
tency and composition of vari-
able systems with multiple view
models. He obtained his PhD
from the University of Texas at
Austin in 2006, funded in part
by a Fulbright Fellowship spon-

sored by the U.S. State Department. From 2005 to 2008, he was a Career
Development Fellow at the Software Engineering Centre of the Univer-
sity of Oxford sponsored by Higher Education Founding Council of
England (HEFCE). His expertise is software product lines, variabil-
ity management, feature oriented software development, model driven
software engineering, and consistency checking.

Alexander Egyed is a Pro-
fessor at the Johannes Kepler
University (JKU), Austria. He
received his Doctorate degree
from the University of South-
ern California, USA and pre-
viously worked for Teknowl-
edge Corporation, USA (2000–
2007) and the University Col-
lege London, UK (2007–2008).
He is most recognized for his
work on software and systems
modeling—particularly on con-
sistency and traceability of mod-
els. Dr. Egyed’s work has been

published at over a hundred refereed scientific books, journals, confer-
ences, and workshops, with over 3000 citations to date. He was recog-
nized as the 10th best scholar in software engineering in Communi-
cations of the ACM and was named an IBM Research Faculty Fellow
in recognition to his contributions to consistency checking, received
a Recognition of Service Award from the ACM, a Best Paper Award
from COMPSAC, and an Outstanding Achievement Award from the
USC. He has given many invited talks including four keynotes, served
on scientific panels and countless program committees, and has served
as program (co-) chair, steering committee member, and editorial board
member of SoSyM and other journals.

123

Author's personal copy

	Constraint-driven modeling through transformation
	Abstract
	1 Introduction
	2 Running example
	3 Constraint-driven modeling
	3.1 Application: uncertainties
	3.2 Incremental constraint model management
	3.2.1 Source model update
	3.2.2 Transformation model update.

	3.3 Constraint validation and solution space
	3.3.1 Constraint addition
	3.3.2 Constraint removal
	3.3.3 Constraint update

	4 Providing guidance and executing fixes automatically
	4.1 Guided fixing
	4.2 Automated fixing
	4.3 User-centric approach

	5 Additional benefits of constraint-driven modeling
	5.1 Rule-scheduling and race conditions
	5.2 Bidirectionality and model merging

	6 Case studies
	6.1 Prototype implementation
	6.2 Case Study I: model to model constraint
	6.2.1 Case study models
	6.2.2 Transformation rules
	6.2.3 Performance evaluation

	6.3 Case Study II: metamodel to model constraints
	6.3.1 Case study models
	6.3.2 Transformation rule
	6.3.3 Performance evaluation

	6.4 Case Study III: software product line to product constraints
	6.4.1 Case study system
	6.4.2 Transformation rules
	6.4.3 Performance evaluation

	7 Discussion
	7.1 Key challenges addressed
	7.2 Scalability
	7.3 Correctness aspects
	7.4 Threats to validity

	8 Related work
	9 Conclusions and future work
	Acknowledgments
	References

